Comparing the prediction accuracy of artifical neural networks and other statistical models for breast cancer survival

نویسندگان

  • Harry B. Burke
  • David B. Rosen
  • Philip H. Goodman
چکیده

The TNM staging system has been used since the early 1960's to predict breast cancer patient outcome. In an attempt to increase prognostic accuracy, many putative prognostic factors have been identified. Because the TNM stage model can not accommodate these new factors, the proliferation of factors in breast cancer has lead to clinical confusion. What is required is a new computerized prognostic system that can test putative prognostic factors and integrate the predictive factors with the TNM variables in order to increase prognostic accuracy. Using the area under the curve of the receiver operating characteristic, we compare the accuracy of the following predictive models in terms of five year breast cancer-specific survival: pTNM staging system, principal component analysis, classification and regression trees, logistic regression, cascade correlation neural network, conjugate gradient descent neural, probabilistic neural network, and backpropagation neural network. Several statistical models are significantly more ac1064 Harry B. Burke, David B. Rosen, Philip H. Goodman curate than the TNM staging system. Logistic regression and the backpropagation neural network are the most accurate prediction models for predicting five year breast cancer-specific survival

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیش‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎بینی بقای بیماران مبتلا به سرطان پستان با استفاده از دو مدل رگرسیون لجستیک و شبکه عصبی مصنوعی

  Background and Objectives : recent years, considerable attention has been paid to statistical models for classification of medical data according to various diseases and their outcomes. Artificial neural networks have been successfully used for pattern recognition and prediction since they are not based on prior assumptions in clinical studies. This study compared two statistical models, arti...

متن کامل

Applying Two Computational Classification Methods to Predict the Risk of Breast Cancer: A Comparative Study

Introduction: Lack of a proper method for early detection and diagnostic errors in medicine are some fundamental problems in treating cancer. Data analysis techniques may significantly help early diagnosis. The current study aimed at applying and evaluating neural networks and decision tree algorithm on breast cancer patients’ data for early cancer prediction. Methods: In the current stu...

متن کامل

Applying Two Computational Classification Methods to Predict the Risk of Breast Cancer: A Comparative Study

Introduction: Lack of a proper method for early detection and diagnostic errors in medicine are some fundamental problems in treating cancer. Data analysis techniques may significantly help early diagnosis. The current study aimed at applying and evaluating neural networks and decision tree algorithm on breast cancer patients’ data for early cancer prediction. Methods: In the current stu...

متن کامل

Prediction of Breast Tumor Malignancy Using Neural Network and Whale Optimization Algorithms (WOA)

Introduction: Breast cancer is the most prevalent cause of cancer mortality among women. Early diagnosis of breast cancer gives patients greater survival time. The present study aims to provide an algorithm for more accurate prediction and more effective decision-making in the treatment of patients with breast cancer. Methods: The present study was applied, descriptive-analytical, based on the ...

متن کامل

Comparing the prediction accuracy of artificial neural networks and other statistical models for breast cancer survival

The TNM staging system has been used since the early 1960's to predict breast cancer patient outcome. In an attempt to increase prognostic accuracy, many putative prognostic factors have been identified. Because the TNM stage model can not accommodate these new factors, the proliferation of factors in breast cancer has lead to clinical confusion. What is required is a new computerized prognosti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994